Hypergeometric Distribution Calculator
Calculate probabilities of the hypergeometric distribution step by step
The calculator will find the simple and cumulative probabilities, as well as the mean, variance, and standard deviation of the hypergeometric distribution.
Your Input
Calculate the various values for the hypergeometric distribution with $$$N = 20$$$, $$$K = 15$$$, $$$n = 12$$$, and $$$k = 8$$$.
Answer
Mean: $$$\mu = n \frac{K}{N} = 12 \cdot \frac{15}{20} = 9$$$A.
Variance: $$$\sigma^{2} = n \frac{K}{N} \frac{N - K}{N} \frac{N - n}{N - 1} = 12 \cdot \frac{15}{20} \frac{20 - 15}{20} \frac{20 - 12}{20 - 1} = \frac{18}{19}\approx 0.947368421052632.$$$A
Standard deviation: $$$\sigma = \sqrt{n \frac{K}{N} \frac{N - K}{N} \frac{N - n}{N - 1}} = \sqrt{12 \cdot \frac{15}{20} \frac{20 - 15}{20} \frac{20 - 12}{20 - 1}} = \frac{3 \sqrt{38}}{19}\approx 0.973328526784575.$$$A
$$$P{\left(X = 8 \right)}\approx 0.255417956656347$$$A
$$$P{\left(X \lt 8 \right)}\approx 0.051083591331269$$$A
$$$P{\left(X \leq 8 \right)}\approx 0.306501547987616$$$A
$$$P{\left(X \gt 8 \right)}\approx 0.693498452012384$$$A
$$$P{\left(X \geq 8 \right)}\approx 0.948916408668731$$$A